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Abstract Dynamical equations describing evolution of state functions in space-time of a
given metric are important components of physical theories of particles. A method based
on a group of the metric is used to obtain an infinite set of general dynamical equations
for a scalar and analytical function representing free and spinless particles. It is shown that
this set of equations is the same for any group of the metric that consists of an invariant
Abelian subgroup of translations in time and space. For Galilean space-time, such group is
the extended Galilei group. Using this group, it is proved that the infinite set of equations
has only one subset of Galilean invariant dynamical equations, and that the equations of this
subset are Schrödinger-like equations.

Keywords Theories of free particles · Galilei and extended Galilei groups ·
Schrödinger-like equations

1 Introduction

In a physical theory that describes free particles in space-time of a given metric, the particles
must be represented by state functions whose evolution in space-time is given by a dynam-
ical equation that must have the same form in all isometric frames of reference. Coordinate
transformations that leave the metric unchanged are called isometric transformations and
they form a group of the metric. A sufficient condition that two observers with the same
metric (whose frames of reference differ by an isometric transformation of coordinates)
identify the same physical object is that the state functions describing this object transform
like one of the irreducible representations (irreps) of the group of the metric. This idea was
first used by Wigner [1] who found the unitary irreps of the Poincaré group and used them
to classify the elementary particles of physics [2].
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To formulate a fundamental physical theory of free and spinless particles in space-time
of a given metric, a dynamical equation describing evolution of a state function of these par-
ticles must have the same form in all isometric frames of reference; in this paper, we refer to
such equations as invariant dynamical equations. Different methods have been used to ob-
tain such equations. In a standard approach, the classical concepts of energy and momentum
become operators [3]. In another approach, Casimir operators of a group of the metric are
used [2, 4]. There is also a Lagrangian formalism that requires an a priori knowledge of a
Lagrangian [5, 6].

In previous studies of free and spinless particles in Galilean space-time, it was established
that Schrödinger’s equation [7] plays the central role in Galilean relativity because of its
Galilean invariance [8–11]. Moreover, the method of Bargmann and Wigner [4] was used by
Levy-Leblond [9] to obtain a set of Galilean invariant dynamical equations for free particles
with arbitrary spins. In our work [12], we developed a method that is based on the Galilei
group of the metric [8, 10] and demonstrated how to formally obtain Galilean invariant
Schrödinger-like equations.

In this paper, a similar method (see Sect. 2) is used to derive an infinite set of dynamical
equations that describe evolution of a scalar and analytic state function in time and space.
The obtained results show that the equations are the same for any group of the metric that
consists of an invariant Abelian subgroup of translations in time and space. For Galilean
space-time, a group that has the required structure is the extended Galilei group. Using this
group, a formal proof is given that only Schrödinger-like equations are Galilean invariant
dynamical equations.

The paper is organized as follows: our method to obtain dynamical equations is described
in Sect. 2; general dynamical equations for a scalar and analytic state function are derived
in Sect. 3; Galilean invariant dynamical equations are obtained in Sect. 3; and conclusions
are given in Sect. 4.

2 Method to Derive Dynamical Equations

The most fundamental problem of any physical theory is to obtain a dynamical equation that
describes how a state function evolves in time and space. In the approach presented here,
we specify the state function and develop a method that allows us to derive a set of general
dynamical equations for this function. To select a subset of dynamical equations that have
the same form in all isometric frames of reference, we specify the metric and search for
dynamical equations that are invariant with respect to all coordinate transformations that
leave the metric unchanged.

Let ψ(r, t), with r = (x, y, z), be a scalar and analytic function representing the particles.
In general, this state function may have different forms in different frames of reference,
however, observers with the known metric (whose frames of reference differ by an isometric
transformation of coordinates) must be able to determine the transformation rule between
the frames.

Our method is based on a group G of the metric that must have the following structure

G = T (3 + 1) ⊗s H, (1)

where T (3 + 1) is an invariant Abelian subgroup of translations in space and time, H is a
subgroup of G and ⊗s represents a semi-direct product.
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Let us consider a set of N functions that forms a basis of an N -dimensional representation
given by a set of N × N matrices A for each irreducible representation (irrep), and for each
element of the group

α̂f
(i)
l =

∑

m

Aml(α̂)f (i)
m , (2)

where α̂ is one of the elements of the group, i labels the irreps and l is one of the members
of the set of N functions satisfying (2). In addition, the sum on m is over the N members of
the set, and the matrices A are assumed to be unitary. We write this equation for space and
time translations separately, and obtain

T̂aψ(r, t) ≡ ψ(r + a, t) = eik·aψ(r, t), (3)

and

T̂t0ψ(r, t) ≡ ψ(r, t + t0) = e−iωt0ψ(r, t), (4)

where a and t0 represent translations in space and time, respectively. This shows that the
unitary irreps of the group T (3 + 1) are labeled by the real scalar ω and the real vector k;
note that there are no other restrictions on these quantities. It must also be mentioned that
these labels are preserved in the irreps of G because T (3 + 1) is its invariant subgroup.

Since ψ(r, t) is an analytic function, we may write

ψ(r + a, t) = ei(−ia·∇)ψ(r, t), (5)

and

ψ(r, t + t0) = e−i(i ∂
∂t

)ψ(r, t). (6)

Comparing (3) and (5), and (4) and (6), we have

−i∇ψ(r, t) = kψ(r, t), (7)

and

i
∂

∂t
ψ(r, t) = ωψ(r, t). (8)

The obtained eigenvalue equations are the necessary conditions for ψ(r, t) to transform like
an irrep of G and to be an eigenfunction of the generators of the invariant Abelian subgroup
T (3 + 1).

Thus use of the irreps of G, properties of the generators of G and analyticity of ψ(r, t)
has led us to the eigenvalue equations, which we consider to be our basic equations for
developing a physical theory of free and spinless particles in space-time with the group G

of the metric. Note that the eigenvalues ω and k label the irreps of G.
The above method is related to the one developed by us previously [12]. In the previous

method, we introduced a new function η(r, t) that accounts for the fact that the eigenfunc-
tions of the energy and momentum operators are not the same. However, when η(r, t) = 1,
the operators in (7) and (8) have the same eigenfunctions, which is the case considered in
this paper.
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3 General Dynamical Equations

Using the basic eigenvalue equations (see (7) and (8)), we derive a set of dynamical equa-
tions given by

im ∂mψ

∂tm
− i2n ωm

k2n
∇2nψ = 0, (9)

where k2 = k · k, and m and n are positive integers. Analyticy of ψ(r, t) guarantees that the
time and space derivatives of arbitrary order can be considered, which gives infinitely many
dynamical equations that could formally be used to construct physical theories.

In general, dynamical equations resulting from (9) can be divided into two classes,
namely, equations that are symmetric (m = 2n) and asymmetric (m �= 2n) in time and space.
For odd values of m, all resulting dynamical equations are asymmetric, and for each even
value of m there is only one symmetric equation. Note also that both sets of symmetric and
asymmetric equations are infinite.

In the case of m = n = 1, we obtain a Schrödinger-like equation, and for m = 2 and
n = 1 a wave-like equation is derived. Dynamical equations with higher-order spatial and
time derivatives can also be obtained from (9) by considering higher values of m and n.

The fact that the set of dynamical equations given by (9) is valid for any metric whose
group has the same structure as G (see (1)) is an important result of this paper. However,
once the metric is known a subset of dynamical equations that are invariant with respect to
all transformations that leave the metric unchanged must be determined. As already stated
in Sect. 1, only the invariant dynamical equations of this subset can be used to formulate
fundamental physical theories of particles.

Since the aim of this paper is to formulate fundamental physical theories in Galilean
space-time, we now determine a subset of Galilean invariant dynamical equations from the
infinite set of equations given by (9).

4 Galilean Invariant Dynamical Equations

4.1 Galilei and Extended Galilei Groups

In Galilean space-time, the metric is given by ds2
1 = dx2 + dy2 + dz2 and ds2

2 = dt2, where
x, y and z are spatial coordinates and t is time. The group of this metric is called the Galilei
group and its structure is

G
↑
+ = [T (1) ⊗ R(3)] ⊗s [T (3) ⊗ B(3)] (10)

where T (1), R(3), T (3) and B(3) are subgroups of translation in time, rotations, translations
in space, and boosts, respectively. In addition, ⊗ is a direct product and ⊗s represents a semi-
direct product. Note that the subgroup [T (3) ⊗ B(3)] is an invariant subgroup of G

↑
+. The

irreps of the group G
↑
+ are the so-called vector irreps and they have no physical interpretation

[13]. There also exists an infinite number of projective (ray) irreps of G
↑
+, however, they are

not equivalent to any vector irrep of the group [14]. These projective irreps can be obtained
by using the method of induced representations [10, 15] that are characterized by a constant
M , which is introduced as a phase factor in defining the irreps [8].

The process of introducing M is equivalent to the central extension of the associated
Lie algebra [16] and the resulting group is called the extended Galilei group Ge; it must be
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noted that Ge is not the group of the metric but instead it corresponds to the extended Galilei
metric. The structure of this group is

Ge = [R(3) ⊗s B(3)] ⊗s [T (3 + 1) ⊗ U(1)] (11)

where T (3 + 1) is a subgroup of translations in space and time and U(1) is a one-parameter
unitary group [10, 15]. The group Ge is the universal covering group of the Galilei group
G

↑
+ and its irreps provide the projective irreps of G

↑
+.

As shown above, the groups G
↑
+ and Ge have different structures, namely, the subgroups

T (1) and T (3) do not form a common invariant subgroup of G
↑
+, however, the subgroup

T (3+1) = T (3)⊗T (1) is an invariant Abelian subgroup of Ge . Hence, our method requires
that Ge is used to determine a subset of Galilean invariant dynamical equations from the
infinite set of equations given by (9).

4.2 Galilean Invariance

The form of (9) indicates that all resulting equations are invariant to translations and rota-
tions, which form subgroups of the group Ge (see (1)). Another subgroup of Ge is formed
by boosts. Hence, what remains to be done is to test all equations given by (9) for Galilean
boost invariance. In Galilean space-time, a boost is defined by the change of coordinate
frame of reference

r′ = r − vt and t ′ = t, (12)

which gives

∂

∂t ′
= ∂

∂t
+ v · ∇ and ∇′ = ∇. (13)

From (7) and (8), it is clear that neither k nor ω are invariant to Galilean boosts. This
means that the only way to find Galilean invariant equations among all possible dynamical
equations given by (9) is to assume that ωm/k2n is a Galilean invariant scalar, or ωm/k2n =
constant. The main results of our search for Galilean invariant dynamical equations are
presented by the following proposition.

Proposition Let ψ(r, t) be a scalar and analytic function that satisfies

im ∂mψ

∂tm
− i2nCm,2n∇2nψ = 0, (14)

where Cm,2n = ωm/k2n, with m and n being positive integers. If Cm,2n is assumed to be
constant, then only one equation is Galilean invariant with C1,2 = constant.

Proof Our basic transformation adopted in this proof is ψ(r, t) = φ(r, t)ψ ′(r, t), where
φ(r, t) is an analytic function to be determined, and ψ ′(r, t) is the transformed state func-
tion. Using this transformation and (12) and (13), we derive the transformed dynamical
equation for ψ ′(r′, t ′). For this transformed equation to be Galilean invariant, it is required
that its form is the same as the form of the dynamical equation for the original state function
ψ(r, t); note that Cm,2n = constant.

We vary m and n in (14), and seek dynamical equations for which the arbitrary function
φ(r′, t ′) can be determined. If φ is found for given values of m and n, then the resulting
dynamical equation is Galilean invariant and the transformation law for the state functions
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ψ(r, t) and ψ ′(r′, t ′) is also obtained; this invariant equation represents a possible phys-
ical theory in Galilean relativity. We begin the proof with the special case of m = 1 and
n = 1, which represents Schrödinger-like equations. Then, we consider the case of m = 2
and n = 1, which corresponds to wave-like equations, and show that the results obtained for
this case can be generalized to all higher values of m and n.

For the case of m = 1 and n = 1, the following transformed equation is obtained

i
∂ψ ′

∂t ′
+ C1,2∇′2ψ ′ = 0, (15)

where C1,2 = constant. Since the form of this equation is the same as that of the original
dynamical equation for ψ(r, t) (see (14)), the condition that is required to determine the
function φ(r, t) is given by

(
i
∂φ

∂t ′
− iv · ∇′φ + C1,2∇′2φ

)
ψ ′ + (

2C1,2∇′φ − ivφ
) · (∇′ψ ′) = 0. (16)

Because ψ ′ �= 0 and ∇′ψ ′ �= 0 for all x and t , the following independent conditions resulting
from (16) are obtained

i
∂φ

∂t ′
− iv · ∇′φ + C1,2∇′2φ = 0, (17)

and

2C1,2∇′φ − ivφ = 0. (18)

From (17) and (18), we have φ = φ0 exp[i(v · r′ + v2t ′/2)/2C1,2], where φ0 is an integration
constant. The existence of the function φ(r′, t ′) is an important result because it demon-
strates that Schrödinger-like equations are Galilean invariant and that the explicit form of
the transformation law for the state functions ψ(r, t) and ψ ′(r′, t ′) can be derived. Taking
φ0 = 1, the transformation law becomes

ψ(r, t) = ψ(r′ + vt ′, t ′) = ψ ′(r′, t ′)e
i

2C1,2
(v·r′+ 1

2 v2t ′)
, (19)

where C1,2 = ω/k2.
The second case considered in this proof is m = 2 and n = 1. The transformed dynamical

equation for this case can be written in the following form

∂2ψ ′

∂t ′2
+ C2,2∇′2ψ ′ = 0, (20)

where C2,2 = const, and the condition that must be satisfied by the function φ(r′, t ′) is

[
∂2φ

∂t ′2
− 2(v · ∇′)

∂φ

∂t ′
+ (v2 − C2,2)∇′2φ

]
ψ ′

+ 2

[
∂φ

∂t ′
− (v · ∇′)φ − φ(v · ∇′)

](
∂ψ ′

∂t ′

)

+ 2

[
(v2 − C2,2)(∇′ψ ′)

(
∂φ

∂t ′

)
v
]

· (∇′ψ ′)

+ [
v2φ

]
(∇′2ψ ′) = 0. (21)
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Assuming that ψ ′ �= 0, ∂ψ ′/∂t �= 0, ∇′ψ ′ �= 0 and ∇′2ψ ′ �= 0 for all x and t , we have the
four conditions on the function φ. One of these conditions requires that φv2 must be equal to
zero. Since v2 �= 0, we must have φ = 0, which means that no transformation law between
the state functions ψ(r, t) and ψ ′(r′, t ′) exists. As a result, the wave-like equation given
by (20) is not Galilean invariant.

The above result can be generalized to all cases of m > 2 and n > 1, and used to demon-
strate that none of the dynamical equations obtained from (14) with the above values of
m and n is Galilean invariant. To prove the latter, we recall that ∇2nψ , with n > 1, pro-
duces all possible combinations of the function φ and its derivatives with the function ψ ′
and its derivatives. One of these combinations will always give the following condition:
[c0φ](∇′2nψ ′) = 0, where c0 is a constant. Since c0 �= 0 and ∇′2nψ ′ �= 0 for all x, the func-
tion φ must be zero. The result has profound implications, namely, it shows that none of the
dynamical equations obtained with m > 2 and n > 1 is Galilean invariant. This concludes
our proof. �

4.3 Discussion

The main result of the above proposition is that theories of free elementary particles that
are described by scalar, analytical functions in Galilean space-time can only be formulated
by functions which satisfy Schrödinger-like equations with m = n = 1 and C1,2 = ω/k2 =
constant (see (14)). This is an important result as it shows that no fundamental physical
theory based on dynamical equations with derivatives higher than the first-order derivative
in time and higher than the quadratic derivative in space can be formulated in Galilean
space-time. It is interesting to note that this restriction includes wave-like equations, at least,
for scalar state functions; on the other hand, it is already known that Galilean invariant
dynamical equations for non-scalar functions exist [8–10].

The fact that the results of our proposition are only valid for C1,2 = ω/k2 = constant
has significant consequences because the coefficient C1,2 must be identified with a physical
quantity that remains the same in both stationary and moving frames of reference. For free
particles considered here, such quantity can be their mass; actually, we denote this mass
as M and refer to it as ‘scaled mass’ because of its physical units. Hence, we may write
C1,2 = 1/2M or M = k2/2ω, which is an interesting relationship between the scaled mass
M and the eigenvalues ω and k.

The physical interpretation of the constant M was also given by Levy-Leblond [8],
however, his approach was different. He started with Schrödinger’s equation [7] of non-
relativistic quantum mechanics and demonstrated that under Galilean transformations the
eigenfunctions must transform like the projective irreps of G

↑
+. After performing Fourier

transforms, he showed that M corresponds to particle’s mass in Schrödinger’s equation [9].
He did not derive Schrödinger’s equation but instead he showed that it was a Galilean in-
variant equation [8, 10, 11].

Let us substitute C1,2 = 1/2M into (14) and (15), and obtain Schrödinger-like equations
for ψ(r, t) and ψ ′(r′, t ′), respectively; since both equations are Galilean invariant, their
forms are the same in the stationary (r, t) and moving (r′, t ′) frames of reference. By sub-
stituting C1,2 = 1/2M into (19), one obtains the explicit form of the transformation law for
the state functions ψ(r, t) and ψ ′(r′, t ′). The observers can use this law to determine how
the state function in one coordinate system is related to that in the other system [3].

Among Schrödinger-like equations, the most prominent member of this class is
Schrödinger’s equation of non-relativistic quantum mechanics. For this equation, we have
C1,2 = �/2m0 or M = m0/�, where m0 is mass of an elementary particle. We may also write
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m0 = �k2/2ω, which shows the dependence of particle’s mass on the Planck constant � and
the eigenvalues k and ω.

A standard approach to introduce Schrödinger’s equation for free particles with zero
spin is to assume that the classical concepts of energy and momentum become operators in
the respective energy and momentum relationships [3]. There is also an elegant procedure
of obtaining Schrödinger’s equation by using a Lagrangian formalism, which requires an
a priori knowledge of Lagrangian [5, 6]. Unfortunately, currently no first principle theory
exists that would allowed predicting the form of the required Lagrangian [5].

Another approach is to use Casimir operators of the symmetry group of Schrödinger’s
equation, which happens to be the extended Galilei group Ge . The Casimir operators of
this group are known [6, 10] and the eigenvalue equation for one of these operators gives
directly Schrödinger’s equation. The problem with this approach is that it requires an a
priori knowledge of the structure of Ge . Actually, the group Ge and its Lie algebra were
established using the already known form of Schrödinger’s equation [8, 10, 15].

Clearly, the above methods to obtain Schrödinger’s equation are different than the method
introduced in Sect. 2. The main advantage of our method is that it allows deriving dynami-
cal equations regardless whether Casimir operators and Lagrangians are known or not. The
method is based on the requirement that the group of a metric has the same structure as the
group G given by (1), that a state function representing free particles is analytic, and that
a dynamical equation describing evolution of this function in time and space is Galilean
invariant. The two latter requirements can be respectively called the Principle of Analytic-
ity and the Principle of Galilean Relativity [12]. The results of this paper show that both
principles are required to obtain Schrödinger’s equation.

5 Conclusions

A method based on a group of the metric was used to derive an infinite set of general dy-
namical equations for a scalar function representing free and spinless particles. The obtained
results showed that this set of equations is the same for any group of the metric that has the
same structure as the group G = T (3 + 1) ⊗s H . The fundamental property of the group G

is that T (3 + 1) is an invariant Abelian subgroup of translations in space and time; note that
there is no restriction on H , which is a subgroup of all other transformations that leave the
metric invariant.

For Galilean space-time, a group that has the required structure is the extended Galilei
group. Using this group, we proved that among infinitely many possible dynamical equa-
tions only Schrödinger-like equations are Galilean invariant. Hence, only Schrödinger-like
equations can be used to formulate fundamental physical theories of particles in Galilean
relativity.

The requirement that the state function is analytic, and that the dynamical equation de-
scribing evolution of this function in time and space is Galilean invariant can be called
the Principle of Analyticity and the Principle of Galilean Relativity [12], respectively. An
important result of this paper is that both principles are required to derive Schrödinger’s
equation.

Another example of a group that has similar structure as the group G is the Poincaré
group, which is the group of the Minkowski metric [2, 8]. This means that our method can
directly be used to formulate physical theories of free and spinless particles in Minkowski
space-time. Actually, the infinite set of equations given by (9) is also valid for the Minkowski
metric, however, a subset of invariant dynamical equations must still be selected.
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Other metrics can also be considered, however, specific applications of our method to
either the Minkowski metric and or other metrics is out of scope of this paper. It is important
to mention that different metrics may lead to different fundamental physical theories and
different sets of free particles that are allowed to be called elementary in these theories. In
other words, what is a fundamental theory and elementary particle for one metric may not
be true for another metric.
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References

1. Wigner, E.P.: Ann. Math. 40, 149 (1939)
2. Kim, Y.S., Noz, M.E.: Theory and Applications of the Poincaré Group. Reidel, Dordrecht (1986)
3. Merzbacher, E.: Quantum Mechanics. Wiley, New York (1997)
4. Bargmann, V., Wigner, E.: Proc. Natl. Acad. Sci. USA 34, 211 (1948)
5. Doughty, N.A.: Lagrangian Interaction. Addison-Wesley, New York (1990)
6. Burgess, M.: Classical Covariant Fields. Cambridge Univ. Press, Cambridge (2002)
7. Schrödinger, E.: Ann. Phys. 79, 361, 489, 734 (1926)
8. Lévy-Leblond, J.M.: J. Math. Phys. 4, 776 (1963)
9. Lévy-Leblond, J.M.: Commun. Math. Phys. 6, 286 (1967)

10. Fushchich, W.I., Nikitin, A.G.: Symmetries of Equations of Quantum Mechanics. Allerton Press, Aller-
ton (1994)

11. van Oosten, A.B.: Apeiron 13, 449 (2006)
12. Musielak, Z.E., Fry, J.L.: Ann. Phys. 324 (2008, in press). doi:10.1016/j.aop.2008.06.006
13. Inönu, E., Wigner, E.P.: Nuovo Cimento 9, 705 (1952)
14. Bargmann, V.: Ann. Math. 59, 1 (1954)
15. Cornwell, J.F.: Group Theory in Physics. Academic Press, London (1984)
16. De Azcarraga, J.A., Izquierdo, J.M.: Lie Groups, Lie Algebras, Cohomology and Some Applications in

Physics. Cambridge University Press, Cambridge (1995)

http://dx.doi.org/10.1016/j.aop.2008.06.006

	General Dynamical Equations for Free Particles and Their Galilean Invariance
	Abstract
	Introduction
	Method to Derive Dynamical Equations
	General Dynamical Equations
	Galilean Invariant Dynamical Equations
	Galilei and Extended Galilei Groups
	Galilean Invariance
	Discussion

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


